
jpkfile Documentation
Release 1.3

Ilyas Kuhlemann

Apr 29, 2019





Contents

1 Install 3

2 First Steps 5

3 Additional Resources 7

4 Indices and tables 15

5 License 17

Python Module Index 19

i



ii



jpkfile Documentation, Release 1.3

jpkfile is a module for reading of data archives recorded with JPK Instruments. It is a very early stage of the project, so
expect to encounter some problems. This project is licensed under MIT License, and everyone is invited to contribute.
If you encounter any problems, feel free to notify me via email, open a new issue on github or fix it and send a pull
request!

To see how to use this module, I recommend to take a look at the files in the examples folder. The source code is
documented on this page. I also refer to a page several times where I describe the structure of JPK archives.

Contents 1

http://www.jpk.com/


jpkfile Documentation, Release 1.3

2 Contents



CHAPTER 1

Install

You have the following three options to install jpkfile.

1.1 via pip

The simplest way, if you have internet access on the target device, is to install via pip. In a command line type:

$ pip install --user jpkfile

1.2 via source

You can also clone/download the source files from jpkfile’s project page. Navigate to your copy of the project folder
in a command line and type:

$ python setup.py install --user

1.3 add module to your PYTHONPATH

Currently jpkfile has only one relevant python file jpkfile.py, which makes “installing” straight-forward: you
simply need to add the folder in which the .py file lies to your python path. One way to do so is to add a .pth file
containing the path to the folder as text to your user’s site-packages folder: * On my Ubuntu 18.04 machine, the
site-packages folder is at /home/<username>/.local/lib/python3.7/site-packages * If yours isn’t there, you can figure
it out by starting python in the command line and typing

>>> import site
>>> site.USER_SITE

• Open a new file in a text editor, enter the path to the folder containing the jpkfile module.

3

https://pypi.org/project/pip/
https://gitlab.gwdg.de/ikuhlem/jpkfile


jpkfile Documentation, Release 1.3

• Save the file into the site-packages folder.

That’s it. You should now be able to import jpkfile anywhere on your system.

4 Chapter 1. Install



CHAPTER 2

First Steps

You can have a look at the read_data_from_jpk_archive.py file, or, if you have jupyter/ipython notebook
installed, at the read_data_from_jpk_archive.ipynb file in the examples folder. Those examples show you
first steps how to use the jpkfile module.

5



jpkfile Documentation, Release 1.3

6 Chapter 2. First Steps



CHAPTER 3

Additional Resources

3.1 Source code documentation

The whole jpkfile project/package consists of only one relevant file for normal use: jpkfile.py. It is composed of
three classes: JPKFile, JPKSegment, and JPKMap. The user’s interface is mostly covered by the JPKFile
class, which is used for regular force and tweezer recordings. For force maps, you need to use the JPKMap class.
JPKSegment is usually created and populated internally from within the other two classes.

3.1.1 JPKFile

class jpkfile.JPKFile(fname)
Class to unzip a JPK archive and handle access to its headers and data.

Parameters fname (str) – Filename of archive to read data from.

get_array(channels=[], decode=True)
Returns channel data from all segments in a numpy array; in addition, reads physical units as specified by
header files.

Parameters

• channels – List of channels (channel names, i.e. strings) of which to return data.

• decode (bool) – Determines whether data is to be decoded, i.e. transformed according
to transformation parameters defined in header files.

Returns Tuple with two items: (1) Numpy array with labeled columns, one column per re-
quested channel; (2) dictionary assigning units to channels.

get_info(issue=’general’)
Request a string on a certain issue. Currently only one issue keyword is possible: ‘segments’. This returns
a summary/overview on segment properties.

Parameters issue (str) – Keyword/issue on which to request information.

Returns String on requested issue.

7



jpkfile Documentation, Release 1.3

read_files(list_of_filenames)
Crawls through list of files in archive and processes them automatically by name and extension. It popu-
lates parameters and segments with content. For different file types present in JPK archives, have a
look at the structure of JPK archives.

has_shared_header = None
Will be set to True if archive has a shared header, False otherwise

num_segments = None
Number of segments in archive.

parameters = None
Dictionary containing parameters read from the top level header.properties file.

segments = None
Dictionary containing one JPKSegment instance per segment.

shared_parameters = None
None if no shared header is present, dictionary containing parameters otherwise.

3.1.2 JPKSegment

class jpkfile.JPKSegment(parent_has_shared_header=False, shared_properties=None)
Class to hold data and parameters of a single segment in a JPK archive. It is usually created internally when
handling a JPK archive with the JPKFile class.

Parameters

• parent_has_shared_header (bool) – True, if JPKFile finds shared header in JPK
archive, False otherwise.

• shared_properties – If parent_has_shared_header is True, this parameter needs to
hold the dictionary containing the header’s contents. Otherwise it is None.

get_array(channels=[], decode=True)
Constructs a numpy array containing data of given channels. If decode is True (default), data is converted
following conversions defined in segment’s header (or shared header).

Parameters

• channels – List of channels (channel names, i.e. strings) of which to return data.

• decode (bool) – Determines whether data is to be decoded, i.e. transformed according
to transformation parameters defined in header files.

Returns Tuple with two items: (1) Numpy array with labeled columns, one column per re-
quested channel; (2) dictionary assigning units to channels.

get_decoded_data(channel, conversions_to_be_applied=’auto’)
Get decoded data of one channel. ‘decoded’ here means the raw, digital data gets converted (to phys-
ical data) following certain conversion steps. These steps should be defined in the JPK archive’s
header files. This routine tries to read those conversion steps from those header files by default (con-
versions_to_be_applied=’auto’). Alternatively, you can pass a list of conversion keywords as conver-
sions_to_be_applied manually (see documentation on JPK archive structures for an overview of what I
think how conversion rules are stored in the header files . . . ).

Parameters

• channel (str) – Name of channel to convert data of.

• conversions_to_be_applied – Specifying what conversions to apply, see descrip-
tion above.

8 Chapter 3. Additional Resources



jpkfile Documentation, Release 1.3

Returns Tuple with 2 items; (1) Single-column numpy array containing converted data; (2) Unit
as read for last conversion step from header file.

get_info(issue=’general’)
Request information (string) on some issue. This is basically just a more user-friendly assignment of
parameters of interest to single keywords. For the issue parameter the following strings are valid:

• ‘general’ (default)

• ‘channels’

• ‘num-points’

• ‘duration’

• ‘type’

Parameters issue (str) – Keyword specifying what kind of information is asked for.

Returns String or list of strings containing requested information.

get_time(offset=0)
Returns time-stamps, increased by possible offset.

data = None
Dictionary assigning numpy arrays containing data and definitions on how to convert raw data to physical
data to all channels present in this segment.

parameters = None
Dictionary holding parameters read from segment header.

3.1.3 JPKMap

class jpkfile.JPKMap(fname)
Loads a JPK map file (ending on ‘.jpk-force-map’) to the buffer. This map consists of multiple ‘pixels’, each
of which is a single force recording at one position. This makes maps a collection of recordings. To get the
single pixels to work in a similar way as the JPKFile objects and to make the whole module more modular (!?)
, I created a class based on JPKFile called _JPKFileForJPKMap, which requires a _VirtualZipFile
object instead of the path to a zip file. This makes the whole concept a bit harder to follow, but it makes the pixels
behave as JPKFile objects. This class is not yet outfitted with many helpful functions to retrieve or analyse data
of the map. The problem is, I don’t really know what is useful and what isn’t, since I never worked with maps.
If you want a feature added, feel free to send me a message or open an issue on github or implement it yourself
and send a pull request.

Parameters fname (str) – Path to force map (zip archive, usually ending on ‘.jpk-force-map’).

get_single_pixel(index)
Returns JPKFile instance of a single pixel.

Parameters index – Integer for flat indices or tuple/list of two integers for grid coordinates
pointing to desired pixel.

read_files()
Crawls through list of files in archive and processes them automatically by name and extension. It popu-
lates parameters and flat_indices with content. For different file types present in JPK archives,
have a look at the structure of JPK archives.

flat_indices = None
Dictionary containing JPKFile instances, one per pixel, indexed with flat indices.

3.1. Source code documentation 9



jpkfile Documentation, Release 1.3

parameters = None
Dictionary holding parameters stored in top level header file.

3.1.4 Helper functions, attributes and classes

jpkfile.extract_data(content, dtype, num_points)
Converts data from contents of .dat files in the JPKArchive to python-understandable formats. This function
requires the binary content, the dtype of the binary content as read from the appropiate header file, and the
number of points as specified in the header file to double check the conversion.

Parameters

• content (str) – Binary content of a .dat file.

• dtype (str) – Data type as read from heade file.

• num_points (int) – Expected number of points encoded in binary content.

Returns Numpy array containing digital (non-physical, unconverted) data.

jpkfile.determine_conversions_automatically(conversion_set_dictionary)
Takes all parameters on how to convert some channel’s data read from a header file to determine the chain of
conversion steps automatically.

Parameters conversion_set_dictionary (dict) – Dictionary of ‘conversion-set’ param-
eters as parsed from header file with function parse_header_file.

Returns List of conversion keywords.

class jpkfile.jpkfile._VirtualZipFile(parent_zip, excerpt_list_of_filenames, prefix)
THIS CLASS SHOULD NEVER BE USED DIRECTLY. IT IS USED INDIRECTLY VIA JPKMap. Virtual
ZipFile class, to make the functionality of the real ZipFile class available for a subfolder of real zip archives. I
implemented this to be able to use the familiar JPKFile class for each pixel of a force map. This way, only few
things have to be adjusted in JPKFileForJPKMap, which inherits JPKFile, to make every pixel available as a
JPKFile instance.

Parameters

• parent_zip (ZipFile) – ZipFile instance holding the subfolder that is to be governed
by this _VirtualZipFile.

• excerpt_list_of_filenames – List of filenames (strings) containing only files of
the subfolder; path has to be relative as if looking from within the subfolder.

• prefix (str) – Path prefix, i.e., path to the subfoler. This is used to construct the complete
path to each file for the real ZipFile instance.

list_of_filenames = None
List of filenames (strings) containing only files of the subfolder; Paths have to be relative as if looking from
within the subfolder. For example, if your complete zip archive (see files in parent_zip) has a folder called
‘A’, and it contains a file named ‘bla.txt’, its path will be ‘A/bla.txt’ in the real ZipFile. In a _VirtualZipFile
supposed to govern the contents of folder ‘A’, the path has to be only ‘bla.txt’, however.

parent_zip = None
(Pointer to) Real ZipFile instance, containing this _VirtualZipFile’s folder.

prefix = None
Prefix to the folder governed by this _VirtualZipFile. Referring to the example above, this needs to be ‘A/’.
It will be used to pass the complete path to the parent_zip.

10 Chapter 3. Additional Resources



jpkfile Documentation, Release 1.3

class jpkfile.jpkfile._JPKFileForJPKMap(virtual_zip, has_shared_header,
shared_parameters)

THIS CLASS SHOULD NEVER BE USED DIRECTLY. IT IS USED INDIRECTLY VIA JPKMap. This class
is derived from JPKFile; its purpose is to make the JPKFile class, which is designed to provide a user interface
to data of a single measurement or recording, available for use with JPKMap (force maps) which is a collection
of multiple recordings.

Parameters

• virtual_zip – (Pointer to) _VirtualZipFile for the subdirectory.

• has_shared_header – True if parent JPKMap has a shared header, False otherwise.

• shared_parameters – None if no shared header present, a dictionary containing pa-
rameters read from shared header otherwise.

3.2 Structure of JPK Archives.

JPK files are zipped archives, containing data and header files, arranged into a top level folder containing one header
filer (named header.properties) and several subfolders. To my knowledge, there are 3 different types of
archives:

• simple force scan, with default file extension .jpk-force. This type contains a single force spectroscopy
recording.

• nt force scan, with default file extension .jpk-nt-force. This contains data recorded with JPK Instruments’
NanoTracker system (optical tweezers).

• force scan map, default extension .jpk-force-map. This type contains a ‘force map’, a collection of simple
force scans.

The following is a closer look at the archive structure. Common features are described first, followed by a list of
features unique to the different archive types.

3.2.1 Common features of JPK archives

• There is a header file at the top level named header.properties. This file appears to contain parameters
all subfolders have in common.

• There can be a folder named shared-data. It contains another header file with the same name as the top
level header, by full path it should be shared-data/header.properties. It contains parameters that
sometimes is referred to by header files in subfolders. It uses a system of indices to discriminate between blocks
of parameters. This indices are then referred to by the header files in subfolders. WARNING I do not know if I
covered all cases of links from local headers to the shared header. This might lead to errors in conversion from
raw data to physical units. I list the cases that I implemented at the bottom under ‘Links to shared header’.

3.2.2 Subfolders in simple force scans and nt force scans

These two archive types seem to have the same structure.

• There is a folder named segments. It contains subfolders with integers as names. Each subfolder stands for
one segment of the recording.

– Each subfolder contains a header file named segment-header.properties. The parameters of this
header file are only valid for one single segment. Among the parameters is one specifying the type of

3.2. Structure of JPK Archives. 11



jpkfile Documentation, Release 1.3

segment: whether it’s an extension, a retraction or a pause. It also contains information on what channels
are present in this segment, and how to convert the raw data to physical data.

– Each subfolder contains another folder named channels.

* The channels folder contains pure data files, no headers or meta-data of any form. The files’ names
are identical to the channels’ names, followed by the extension .dat. The data type is specified in
the segment-header.properties file above. The data type has to be known to read the binary
data in the files and convert it into a python data type. All data appears to be stored in C structs and
can be converted using the python module struct’s function unpack.

3.2.3 Additional files in force scan maps

This archive type has some additional files at the top level:

• thumbnail.jpg, data-image.force. Both seem to be preview images, maybe with different file types
for different systems, not sure.

• A folder named index. It contains subfolders with integers as names. Each of these folders holds the data of
one pixel of the force map and parameters valid only for one pixel.

– The contents of each of those folders are identical to that of a simple force scan. They contain another
header.properties and a segments folder.

3.2.4 Links to shared header

General rule

The header files contain many parameters (one per line), they have the form of keywords separated by dots, followed
by an equal sign and a value. Here is an example from a header file:

channel.ySignal1.data.num-points=16384

A parameter line can also contain a link to parameters in the shared header. They take the following form:

<keyword_1>.<keyword_2>...<keyword_n>.<link_label>-info.*=i

where i is an integer.This links to parameters starting with <link_label>-info.i in the shared header, like so:

<link_label>-info.i.<keyword_a1>.<keyword_a2> = value_a
<link_label>-info.i.<keyword_b1> = value_b

and so on. These would then be considered in the local header as

<keyword_1>.<keyword_2>...<keyword_n>.<keyword_a1>.<keyword_a2> = value_a
<keyword_1>.<keyword_2>...<keyword_n>.<keyword_b1> = value_b

In other words, you leave out the label with the ‘-info’ suffix and the integer and append the keywords and values that
follow in the shared header.

Links from segments to shared header

The following are lists of where links to a shared header occured in the JPK archives that I used to test the jpkfile
module.

12 Chapter 3. Additional Resources



jpkfile Documentation, Release 1.3

1. For data conversion

For conversion of raw data to physical data, the headers contain a key called conversion-set, under which there can
be multiple factors that need to be applied for the conversion. Instead of storing the conversion-set locally, it can be
stored in the shared header. This seems to be the case if there is a keyword chain looking like this in the local header:

channel.<channel_label>.lcd-info.*=i

This integer links to a number in the shared header, occuring in the following style:

lcd-info.i

There can be multiple parameters starting with this keyword chain.

2. General segment information

Some of the segment’s general parameters can be stored in a shared header. There needs to be the following chain of
keywords:

force-segment-header.force-segment-header-info.*=i

This links to parameters in the shared header starting with:

force-segment-header-info.i

3.2. Structure of JPK Archives. 13



jpkfile Documentation, Release 1.3

14 Chapter 3. Additional Resources



CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15



jpkfile Documentation, Release 1.3

16 Chapter 4. Indices and tables



CHAPTER 5

License

The MIT License (MIT) Copyright (c) 2016 Ilyas Kuhlemann

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

17



jpkfile Documentation, Release 1.3

18 Chapter 5. License



Python Module Index

j
jpkfile, 10

19



jpkfile Documentation, Release 1.3

20 Python Module Index



Index

Symbols
_JPKFileForJPKMap (class in jpkfile.jpkfile), 10
_VirtualZipFile (class in jpkfile.jpkfile), 10

D
data (jpkfile.JPKSegment attribute), 9
determine_conversions_automatically()

(in module jpkfile), 10

E
extract_data() (in module jpkfile), 10

F
flat_indices (jpkfile.JPKMap attribute), 9

G
get_array() (jpkfile.JPKFile method), 7
get_array() (jpkfile.JPKSegment method), 8
get_decoded_data() (jpkfile.JPKSegment method),

8
get_info() (jpkfile.JPKFile method), 7
get_info() (jpkfile.JPKSegment method), 9
get_single_pixel() (jpkfile.JPKMap method), 9
get_time() (jpkfile.JPKSegment method), 9

H
has_shared_header (jpkfile.JPKFile attribute), 8

J
JPKFile (class in jpkfile), 7
jpkfile (module), 10
JPKMap (class in jpkfile), 9
JPKSegment (class in jpkfile), 8

L
list_of_filenames (jpkfile.jpkfile._VirtualZipFile

attribute), 10

N
num_segments (jpkfile.JPKFile attribute), 8

P
parameters (jpkfile.JPKFile attribute), 8
parameters (jpkfile.JPKMap attribute), 9
parameters (jpkfile.JPKSegment attribute), 9
parent_zip (jpkfile.jpkfile._VirtualZipFile attribute),

10
prefix (jpkfile.jpkfile._VirtualZipFile attribute), 10

R
read_files() (jpkfile.JPKFile method), 7
read_files() (jpkfile.JPKMap method), 9

S
segments (jpkfile.JPKFile attribute), 8
shared_parameters (jpkfile.JPKFile attribute), 8

21


	Install
	First Steps
	Additional Resources
	Indices and tables
	License
	Python Module Index

